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A B S T R A C T   

Mold on bread in the early stages of growth is difficult to discern with the naked eye. Visual inspection and 
expiration dates are imprecise approaches that consumers rely on to detect bread spoilage. Existing methods for 
detecting microbial contamination, such as inspection through a microscope and hyperspectral imaging, are 
unsuitable for consumer use. This paper proposes a novel early bread mold detection method through micro
scopic images taken using clip-on lenses. These low-cost lenses are used together with a smartphone to capture 
images of bread at 50× magnification. The microscopic images are automatically classified using state-of-the-art 
convolutional neural networks (CNNs) with transfer learning. We extensively compared image preprocessing 
methods, CNN models, and data augmentation methods to determine the best configuration in terms of classi
fication accuracy. The top models achieved near-perfect F1 scores of 0.9948 for white sandwich bread and 0.9972 
for whole wheat bread.   

1. Introduction 

Bread is one of the most commonly consumed foods worldwide. 
Depending on the type, moisture content, room temperature, and 
amount of preservative used, bread can be stored at room temperature 
for a few days or up to three or more weeks (Degirmencioglu et al., 
2011). If stored for too long, bread can develop fungi or mold, making it 
unsafe for consumption. In the early growth stage, mold can be difficult 
to discern with the naked eye. Moreover, some types of bread have 
non-uniform textures or colors that make it harder to detect the mold. 
Consumers often rely on the expiration date or best-before date printed 
on the product’s packaging to determine whether the bread is safe for 
consumption. However, manufacturers assume typical storage condi
tions when setting these dates, and storage conditions can vary signifi
cantly across households, seasons, and regions. For example, many 
consumers store bread in a refrigerator or freezer, and expiration dates 
cannot be relied on in these cases. Visual and odor inspection is also not 
always reliable, especially in the early stage of mold growth. Therefore, 
in this work, we propose a novel method for regular consumers to detect 
bread mold. This method focuses on the early stages where signs of mold 
are not apparent to the naked eye, and it thus reduces the risk of food 
poisoning as well as food waste. 

Since bread mold in the early stages of growth can be difficult to 

notice with the naked eye or even in high-resolution photographs, using 
magnified images of the bread is necessary for this task. Microscopes are 
the best tool for taking microscopic images, but they require expertise 
and are too cumbersome for regular consumers to use. Smartphone clip- 
on lenses have recently been developed (CU SmartLens, 2023; Apexel, 
2023; SmartMicroOptics, 2023; knowthystore, 2023). These lenses 
provide 20–100× magnification at a fraction of the cost of a typical 
microscope and, more importantly, can be conveniently used by a 
layperson. Since enough light can pass through a slice of bread, the 
sample does not need to be cut to capture a well-lit photograph. How
ever, having a light source behind the object is still necessary, and an 
adjustable microscope stage or camera stand will aid in obtaining a 
well-focused and clear image. Although 50× magnification is enough to 
see the mold clearly, regular consumers are unfamiliar with microscopic 
images of bread textures and mold. Therefore, in this work, we develop 
computer models that can automatically perform the task of mold 
detection in images for them. 

Convolutional neural networks (CNNs) are a class of bio-inspired 
computer models that have emerged as one of the top-performing 
models for image classification. CNNs have been extensively studied 
and used in many domains, including in the detection and classification 
of microorganisms. Sun et al. (2016) explored the problem of detecting 
and identifying mold colonies in images of unhulled rice. The models 
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used include the support vector machine, artificial neural network, 
convolutional neural network, and deep belief network. Mishra et al. 
(2019) and Jubayer et al. (2021) used enhanced image segmentation 
and object detection algorithms, respectively, to detect mold in various 
foods, including bread. While these approaches do not require special
ized equipment, they rely on non-magnified images. Hence, when used 
for mold detection, mold can only be detected once it has grown 
significantly enough to be seen with the naked eye; hence, a significant 
risk of food poisoning remains for the consumer even when mold is not 
detected. 

CNNs developed in the recent years tend to have a large number of 
layers. These “deep” CNNs can capture and analyze complicated pat
terns but require large training datasets. In the absence of such datasets, 
transfer learning can be used to train accurate models. Deep CNNs are 
commonly used for classifying microscopic images. Wahid et al. (2019) 
used the Xception deep learning model to classify seven varieties of 
bacteria that cause human diseases. Mahbod et al. (2021) identified 
three categories of pollen grains and non-pollen (debris) based on their 
microscopic images. The authors used four CNN models together, and 
the final determination was based on the average output of the four 
models. Other studies have utilized deep learning for the classification of 
human cells, usually for clinical diagnosis (Liu et al., 2022; Nguyen 
et al., 2018; Iqbal et al., 2019; Alzubaidi et al., 2020; Qin et al., 2018; 
Meng et al., 2018). Our work proposes another application of deep 
learning to classify microscopic images, for a layperson to use as an 
expert system. 

Hyperspectral and multispectral imaging, paired with machine 
vision or machine learning techniques, have been successfully used to 
analyze food quality and detect microbial, chemical, and physical con
taminants. Both types of imaging work by capturing images of an object 
based on how different wavebands are altered by the object. Hyper
spectral imaging utilizes wide, continuous wavebands that provide more 
complete data, while multispectral imaging utilizes only a few non- 
continuous wavebands to speed up image acquisition (Qin et al., 
2013). Chu et al. (2020) used near-infrared hyperspectral imaging, 
principal component analysis, the successive projections algorithm, and 
a support vector machine to detect fungal infection in maize kernels. The 
top method achieved 99–100% accuracy in three maize hybrids. Bonah 
et al. (2020) used visible near-infrared hyperspectral imaging to detect, 
quantify, and visualize bacteria on the surface of pork. The most accu
rate approaches used only eight to 21 wavebands out of 618 available 
and achieved very low error rates. Xie et al. (2017) used hyperspectral 
imaging to detect tomato leaves infected with gray mold. Feature se
lection combined with the k-nearest neighbor algorithm produced the 
best classification accuracy of 97.22%. Meng et al. (2020) detected 
southern corn rust, caused by a fungal pathogen, using reflectance 
spectra of the leaf. Amodio et al. (2017), Teerachaichayut and Ho 
(2017), and Pissard et al. (2021) used near-infrared spectroscopy to 
evaluate the quality of strawberries, limes, and apples, respectively. 

While the imaging techniques reviewed above provide excellent 
detection capability, they require expensive, sophisticated hardware 
unsuitable for consumer use. Food safety research generally focuses on 
food safety during production, processing, and distribution. In this work, 
we instead focus on making improvements on the consumers’ side. The 
objective of this study is to propose and evaluate a method for early 
bread mold detection that is appropriate for consumer use. Our method 
utilizes microscopic clip-on lenses to capture images of bread and CNNs 
to detect mold automatically in the images. To the best of our knowl
edge, this is the first proposal to use microscopic clip-on lenses to detect 
early microbial growth in food. A mobile application can be developed 
using our method and would allow consumers to conveniently check and 
ensure that their bread is mold-free. 

The major contributions of this work can be summarized as follows.  

1. We propose a novel, low-cost method for consumers to detect early 
mold growth on bread through microscopic clip-on lenses. 

2. For untrained consumers, we propose using CNN models to auto
matically determine whether a microscopic image of bread contains 
mold. 

3. We extensively evaluate many aspects of CNN model training con
figurations, including image preprocessing methods, CNN model, 
image resolution, and data augmentation, to achieve optimum clas
sification accuracy. 

4. We evaluate the proposed method on white and whole wheat sand
wich bread stored in realistic conditions with natural mold growth. 
The top approaches achieve near-perfect classification accuracy, 
with F1 scores of 0.9948 for white bread and 0.9972 for whole wheat 
bread. However, white bread is more difficult to classify, requiring 
higher image resolution and data augmentation to achieve compa
rable results to those for whole wheat bread. 

The rest of the paper is organized as follows: Section 2 describes the 
data collection method, image preprocessing method, and CNN models. 
Section 3 presents the evaluation method and discusses the results, and 
conclusions are drawn in Section 4. 

2. Methodology 

The overall steps in our method are as follows. First, we took 
microscopic photographs of the bread using 50x lenses clipped onto a 
smartphone. Both images with no mold and images with mold present 
were necessary. The images underwent preprocessing steps before they 
were used to train the CNN classifier using transfer learning. The output 
of the CNN classifier was the class of image, indicating whether mold 
was present in the image. 

2.1. Datasets1 

We used the two most popular types of sliced bread to train and 
evaluate our models: 1) white sandwich bread and 2) whole wheat 
sandwich bread, locally obtained in Phuket, Thailand. Both types of 
bread contained preservatives, and the expiration date was five days 
after the day the bread was purchased. We collected images of bread 
without mold within the first three days to ensure that no mold was 
present. To collect images of bread with mold, we stored the bread in its 
original packaging at room temperature (25–30 ◦C) and away from 
sunlight until a small amount of mold was present upon careful 

Fig. 1. Clip-on microscopic lens used in the study.  

1 The datasets are available at https://github.com/NawanolT/Bread-Mold 
-Datasets. 
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inspection. We then took photographs of the bread, focusing on the 
moldy parts. The photographs were taken using a Huawei P30 Pro 
smartphone and a 50x CU SmartLens microscopic clip-on lens, as shown 
in Fig. 1 (CU SmartLens, 2023). We chose this model of clip-on lenses 
because it has a smaller footprint and lower cost, and it does not require 
batteries/charging, making it suitable for consumer use. This model’s 
maximum magnification is 50x, which is sufficient for mold detection. 
The effect of using a lower magnification can be approximated through 

lower image resolution. The following camera settings were used: 
40-megapixel image resolution, automatic sensor sensitivity (ISO), 
automatic shutter time, automatic white balance, and exposure value 
adjusted manually for each shot to produce well-illuminated images. 
The photography setup is depicted in Fig. 2. We placed the slice of bread 
directly on a transparent stage with an LED (light-emitting diode) light 
source underneath, and the smartphone was placed on an adjustable 
stand. We took the microscopic photograph of the bread directly, 
without cutting the bread and without using glass slides. A domain 
expert then classified the images into the following two classes. 

1. No mold (negative class): The magnified image contained no evi
dence of mold and was taken during the first three days after 
obtaining the bread, before the expiration date.  

2. Mold present (positive class): Mold was visible in the magnified 
image but was not immediately noticeable to the naked eye. 

Examples of magnified and non-magnified images of both classes of 
white bread are presented in Fig. 3. Images of whole wheat bread also 
have similar patterns. Images that did not fit either of the two classes 
above, such as images of moldy bread where mold was not visible in the 
magnified image, were excluded. Blurry images and images that were 
too dark or too bright were also excluded. 

The two datasets, one for white sandwich bread and another for 
whole wheat sandwich bread, were kept separated and never combined. 
Each dataset was divided into a training set, a validation set, and a test 
set with a rough ratio of 60:15:25, separated by the slice of bread from 
which the images were taken, to ensure that different subsets never 
contained images from the same slice of bread. The training set was used 

Fig. 2. Photography setup for bread image collection.  

Fig. 3. Examples of images of the same slice of white sandwich bread.  
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to train the CNN model, while the validation set was used for learning 
rate optimization, and the test set was used to evaluate the models. The 
number of images in each subset is listed in Tables 1 and 2. 

2.2. Image preprocessing 

Microscopic images taken using a 50x CU SmartLens have black 
corners due to vignetting. However, the presence of these black corners 
does not affect CNN models’ prediction performance, so it is unnec
essary to remove them from the images. Following the convention of 
image classification research, the images were cropped to a square size. 
However, we skipped center cropping (zooming in) because in some of 
our images, the mold was only present near the edge of the image, and 
center cropping would remove it. Significant portions of dark corners 
were unintentionally removed in the process of square cropping. 

The most noticeable sign of mold was the presence of its spores, seen 
in 50x microscopic images as clusters of tiny black dots. In some images, 
the mycelium, the root-like structure of a fungus, was also visible. 
However, some images of bread with no mold also contained isolated 
small black dots, which could confuse untrained humans. In addition, 
the overall colors of microscopic images of bread varied between shots, 
ranging from red to yellow to green, due to the different densities of 

bread, independent of whether mold was present. Since these patterns 
did not contain apparent color information, converting the image to 
grayscale could improve the models’ prediction performance. Further
more, the brightness of the images also varied between shots. Therefore, 
we compared the following image representations.  

1. RGB (red-green-blue): Images are represented in red-green-blue 
format and undergo no color or brightness change.  

2. RGB w/normalized mean: The brightness of each image is adjusted 
so that its brightness mean is equal to the brightness mean of the 
entire dataset. 

3. RGB w/normalized mean and SD (standard deviation): The bright
ness of each image is adjusted so that its brightness mean and stan
dard deviation are equal to the brightness mean and standard 
deviation of the entire dataset.  

4. Grayscale: Images are converted to grayscale.  
5. Grayscale w/normalized mean: Images are converted to grayscale, 

and the brightness of each image is adjusted so that its brightness 
mean is equal to the brightness mean of the entire dataset.  

6. Grayscale w/normalized mean and SD: Images are converted to 
grayscale, and the brightness of each image is adjusted so that its 
brightness mean and standard deviation are equal to the brightness 
mean and standard deviation of the entire dataset. 

Conversion from RGB to grayscale accounts for differences in 
humans’ perceived brightness of red, green, and blue light using the 
following weighted average: 

Y = 0.299R + 0.587G + 0.114B, (1)  

where Y is the grayscale value and R, G, and B are the values of the red, 
green, and blue components, respectively. 

2.3. Data augmentation 

Because our datasets were small, techniques that could help expand 
the datasets were potentially beneficial. A commonly used technique is 
data augmentation, where data points are modified realistically and are 
either added to the dataset or used in place of the original data points. 
Data augmentation can reduce overfitting and allow the model to 
recognize more patterns in data. Many operations are commonly used 
for image data, such as flipping, rotation, zooming, cropping, trans
lation, and adjusting brightness and contrast. As some of our images 
contained bread mold near the edges of the images, we excluded oper
ations that were likely to remove the images’ edges. Therefore, we used 
and compared the following three image operations for data 
augmentation.  

1. Brightness adjustment, where brightness is modified by a random 
factor in the range of [-0.2, 0.1] relative to the entire range of the 
pixel value, which is 255  

2. Flipping, both horizontally and vertically, with a probability of 0.5 
each, and performed independently  

3. Rotation, from 0 to 360◦, with points outside the boundary of the 
original image filled by the reflection of the original image 

Instead of producing separate datasets with augmented data before 
model training, we implemented data augmentation operations as the 
first layers of the CNN model. With this setup, every image is randomly 
transformed just before it is processed during training. Each image may 
be transformed differently in each training pass (epoch). Compared with 
generating a fixed dataset, this approach has the benefit that many 
different transformations of each image can be generated without 
increasing the size of the dataset, which would increase the computa
tional requirements. 

Table 1 
Size of white sandwich bread dataset.  

Subset Number of Images 

No Mold Mold Present Total 

Training 632 245 877 
Validation 153 75 228 
Test 303 87 390 
Total 1,088 407 1,495  

Table 2 
Size of whole wheat sandwich bread dataset.  

Subset Number of Images 

No Mold Mold Present Total 

Training 471 460 931 
Validation 105 113 218 
Test 160 179 339 
Total 736 752 1,488  

Table 3 
CNN models included in the comparison.  

Model Number of Parameters 

DenseNet121 (Huang et al., 2017) 7.0M 
EfficientNetV2B0 (Tan and Le, 2021) 5.9M 
EfficientNetV2B1 (Tan and Le, 2021) 6.9M 
EfficientNetV2B2 (Tan and Le, 2021) 8.8M 
EfficientNetV2B3 (Tan and Le, 2021) 12.9M 
EfficientNetV2L (Tan and Le, 2021) 117.7M 
EfficientNetV2M (Tan and Le, 2021) 53.2M 
EfficientNetV2S (Tan and Le, 2021) 20.3M 
InceptionResNetV2 (Szegedy et al., 2017) 51.8M 
InceptionV3 (Szegedy et al., 2016) 21.8M 
MobileNet (Howard et al., 2017) 3.2M 
MobileNetV2 (Sandler et al., 2018) 2.3M 
MobileNetV3Large (Howard et al., 2019) 3.0M 
MobileNetV3Small (Howard et al., 2019) 0.9M 
NASNetMobile (Zoph et al., 2018) 4.3M 
RegNetX016 (Radosavovic et al., 2020) 7.9M 
RegNetX032 (Radosavovic et al., 2020) 14.4M 
RegNetY016 (Radosavovic et al., 2020) 9.9M 
RegNetY032 (Radosavovic et al., 2020) 18.0M 
ResNet50 (He et al., 2016a,ba) 23.6M 
ResNet50V2 (He et al., 2016a,bb) 23.6M 
Xception (Chollet, 2017) 20.9M  

P. Treepong and N. Theera-Ampornpunt                                                                                                                                                                                                   



Current Research in Food Science 7 (2023) 100574

5

2.4. Models 

Many CNN models designed for image classification have been pro
posed. The best model depends on the task at hand, among other things. 
However, based on previous studies, a large dataset is necessary to train 
an accurate CNN model that can recognize complex patterns. Our 
datasets contain only 1,488–1,495 images, which is insufficient to train 
an accurate model from scratch. Fortunately, a technique called transfer 
learning allows us to use complex CNN models with our datasets. First, 
the model is trained on a large dataset for a separate task. Then, the last 
few layers of the model are replaced with new layers for our task, and 
the weights of only the new layers are trained using our smaller dataset. 
This approach can be viewed as using the original CNN model as the 
feature extractor for the new task. Application of this approach in many 
domains has shown that it produces robust and highly accurate classi
fiers, even when the images in both datasets are dissimilar. The CNN 
models we used are summarized in Table 3. 

For our work, all CNN models were pretrained using the ImageNet 
dataset (Russakovsky et al., 2015). The original output layer was 
replaced by a two-dimensional global average pooling layer, a dropout 
layer with a dropout rate of 0.2, and an output layer with a single node. 
The pretrained weights were fixed, and the binary cross-entropy loss 
function was used. Important hyperparameters of the models that 
needed to be carefully chosen or optimized included the following.  

1. Optimizer and its parameters, such as learning rate  
2 Batch size  
3 Number of epochs or steps for which to train each model 

We used Adam as the optimizer, as it has demonstrated superior 
performance and is often provided by libraries as the default optimizer 
(Kingma and Ba, 2014). We fixed the batch size at 64, as it was the 
maximum value that allowed all CNN models to run on our testbed 
without out-of-memory errors. The number of epochs refers to the 
number of complete passes the training process iterates over the training 
dataset. To keep the amount of computation reasonable and bounded, 
we fixed the number of epochs to train each model at 100. The Adam 
optimizer has many parameters, the most important being the learning 
rate (Godbole et al., 2023). The optimal learning rate depends on the 
CNN model, among other things. Therefore, each time a model was 
trained and evaluated, we optimized the learning rate using the 
following two-step process, illustrated in Fig. 4. 

Step 1: Find the optimal learning rate. The model is trained on the 
training set using multiple learning rate values. The value that produces 
the highest prediction performance on the validation set is then used in 
step 2. The learning rate values used are 0.0001, 0.0002, 0.0005, 0.001, 
0.002, 0.005, 0.01, 0.02, and 0.05. When the learning rate is too low, the 
accuracy will be low. By contrast, when the learning rate is too high, the 

accuracy could be low or high, but it is unstable across epochs, as it 
jumps back and forth between the local minimum and other points away 
from it. To avoid learning rates that are too high, the maximum (i.e., 
worst) validation loss over the last 10 epochs is used to compare the 
learning rates. 

Step 2: Train and evaluate the model. The best learning rate from 
step 1 is used to train the model from scratch again using the training set 
and validation set combined, and the prediction performance on the test 
set is reported. We trained each model five times and reported the 
average performance to reduce variance across runs. 

Other parameters of the Adam optimizer are left at their default 
values: 0.9 for β1, 0.999 for β2, 1 × 10− 7 for ε, and no weight decay. 

3. Evaluation 

3.1. Experiment setup 

We evaluated the classification accuracy of the proposed method 
using two datasets containing 1,495 and 1,488 microscopic images of 
white and whole wheat bread, respectively. These datasets were used 
separately and never combined. Each dataset was divided into a non- 
overlapping training set, validation set, and test set. Section 2 details 
the datasets, image preprocessing methods, and selection of model 
hyperparameters. 

Since our image classification task focuses on the positive class (mold 
present), we used precision and recall instead of accuracy as the primary 
metrics to evaluate and compare the models. Precision is the fraction of 
positive predictions that are correct. That is, when the model detects 
mold in an image, precision is the probability that the image actually 
contains mold. Recall is the fraction of data points in the positive class 
that are correctly classified. That is, of all images that actually contain 
mold, recall is the fraction that the model detects. Both metrics range 
from 0 to 1, with higher values indicating a more accurate classification. 
To compute an accurate and representative precision value, it is neces
sary to use the test set with the same class distribution as the distribution 
in actual use (i.e., by consumers). This distribution differs from our 
datasets’ distributions because ours depend solely on the number of 
images of each class we managed or chose to collect. To avoid bias to
ward either class, we assumed that both classes are evenly distributed. 
Instead of modifying our test datasets, we assigned the appropriate 
weight to data points in each class such that both classes had equal 
overall importance. That is, we calculated precision as 

Precision=
TP

TP + FP • wneg
, (2)  

where TP is the number of true positives; FP is the number of false 
positives; and wneg is the relative weight of each negative data point 

Fig. 4. Two-step model training process for learning rate optimization.  
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compared to each positive data point, defined as 

wneg =
Npos

Nneg
, (3)  

where Npos and Nneg are the numbers of data points in the positive and 
negative classes, respectively, in the test set. This allowed us to use all 
data points in our test set while ensuring a representative value of pre
cision. The weight of each positive data point was fixed at 1. Recall is not 
affected by class distribution, so no adjustment is necessary. 

To enable a simple comparison of prediction performance, precision 
and recall are summarized into F1 score, which is the harmonic mean of 
precision and recall, defined as 

Table 4 
Mean and SD values used to normalize images in each dataset, 0–255 scale.  

Type of Bread Image Representation Mean SD 

White Bread RGB 127.62 73.10 
White Bread Grayscale 151.33 30.84 
Whole Wheat Bread RGB 111.10 86.43 
Whole Wheat Bread Grayscale 134.13 39.49  

Fig. 5. Top models’ classification performance for different image representations.  
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F1 score= 2
Precision • Recall
Precision + Recall

. (4) 

The range of F1 scores is 0–1, with higher values indicating a more 
accurate classification. A value of 1 means all data points are correctly 
classified. 

We designed five experiments, each aimed to evaluate or optimize 
certain aspects of the proposed method, as follows. 

Experiment 1: Comparing image representations 
Experiment 2: Comparing CNN models for each image resolution 
Experiment 3: Comparing data augmentation methods 
Experiment 4: Effect of transfer learning 
Experiment 5: Cross-dataset prediction 

In experiments 1–3, we aimed to find the best configuration/model 
in terms of classification accuracy. Experiment 2 would additionally 
inform us how the magnification power of the lens affects classification 
accuracy. Experiment 4 investigated the degree to which transfer 
learning improves classification accuracy. Experiment 5 evaluated the 
models’ accuracy when the test images were of a slightly different type 
of bread than the types in the training images. 

To keep the amount of computation reasonable, we started by 
finding the best combination of image representation and CNN model 
using greedy search, where only one hyperparameter/aspect is changed 
at a time, rather than a complete grid search where all configurations are 
evaluated. The values from the best configuration(s) were then used as 
fixed hyperparameters in each experiment. The batch size was always 
fixed at 64. The Adam optimizer was used, with β1 of 0.9, β2 of 0.999, ε 
of 1× 10− 7, and no weight decay. The learning rate was optimized using 
the two-step process specified in Section 2.4. 

The experiments were run on a computer with an Intel Core i5- 
12400F processor, 64 gigabytes of memory, and an Nvidia GeForce 
RTX 3090 graphic processing unit (GPU), and running the Ubuntu 22.10 
operating system. The TensorFlow library was used to preprocess im
ages, process data, train the models, and evaluate the models. 

3.2. Experiment 1: comparing image representations 

The first experiment aimed to determine the best way to represent 
and normalize the images. Section 2.2 describes the six image repre
sentations/approaches that we compared. The image resolution was 
fixed at 896 × 896 pixels, and the top four to five CNN models for each 
type of bread were used. Table 4 lists the mean and SD values used to 
normalize images in each dataset. Note that the means of RGB and 
grayscale representations differ because we converted images from RGB 
to grayscale using a weighted average that accounts for differences in 
humans’ perceived brightness of different colors. 

Fig. 5 illustrates the classification performance. For white bread, 
grayscale representations tended to produce slightly better results than 
RGB. Grayscale with normalized mean representation produced the best 
results, with an average F1 score of 0.9797. 

For whole wheat bread, however, RGB produced noticeably better 
results than grayscale. Normalizing the mean and SD slightly lowered 
the performance for both RGB and grayscale. The best results were ob
tained using RGB representation, with an F1 score of 0.9972 for all top 
models. 

These results suggest that the best image representation is different 
for white and whole wheat bread. We hypothesize that microscopic 
images of whole wheat bread contain color patterns or information that 
is helpful – although not necessarily apparent upon inspection – to the 
models for detecting mold. In subsequent experiments, we will use 
grayscale with normalized mean representation for white bread and 
RGB representation for whole wheat bread. 

3.3. Experiment 2: comparing CNN models for each image resolution 

In this experiment, we aimed to identify the most accurate CNN 
model, measured in terms of F1 score, and to investigate how image 
resolution affects classification accuracy. However, the most accurate 
model may be different for different image resolutions. Therefore, we 
performed and presented the comparison separately for each image 
resolution. We used image resolutions of 224 × 224, 448 × 448, 672 ×
672, and 896 × 896 pixels. All 22 models listed in Section 2.4 were 
included in the comparison. Using a lower image resolution can 
approximate the effect of using a lens with lower magnification power, 
with the four resolutions corresponding to 12.5x, 25x, 37.5x, and 50×
magnification, respectively. 

Tables 5 and 6 present the classification performance of all models at 

Table 5 
Comparison of F1 scores of CNN models at various image resolutions for white 
bread.  

CNN Model Image Resolution (pixels) 

224 × 224 448 × 448 672 × 672 896 × 896 

DenseNet121 0.8263 0.9162 0.9526 0.9316 
EfficientNetV2B0 0.8538 0.9187 0.9609 0.9547 
EfficientNetV2B1 0.8308 0.9277 0.9457 0.9602 
EfficientNetV2B2 0.8490 0.9316 0.9477 0.9743 
EfficientNetV2B3 0.7726 0.9498 0.9583 0.9602 
EfficientNetV2L 0.7501 0.9219 0.9633 0.9838 
EfficientNetV2M 0.7123 0.8523 0.9511 0.9683 
EfficientNetV2S 0.8351 0.8853 0.9598 0.9790 
InceptionResNetV2 0.8317 0.8347 0.9141 0.9347 
InceptionV3 0.7755 0.8978 0.9367 0.8909 
MobileNet 0.7223 0.8824 0.9451 0.9589 
MobileNetV2 0.8414 0.8951 0.9567 0.9465 
MobileNetV3Large 0.7902 0.9571 0.9669 0.9772 
MobileNetV3Small 0.8339 0.8627 0.8741 0.9296 
NASNetMobile 0.7982 0.8622 0.8719 0.8539 
RegNetX016 0.8988 0.9147 0.9415 0.9400 
RegNetX032 0.8532 0.9138 0.9318 0.9732 
RegNetY016 0.9029 0.9190 0.9564 0.9571 
RegNetY032 0.8583 0.9644 0.9529 0.9789 
ResNet50 0.8755 0.9612 0.9610 0.9658 
ResNet50V2 0.6957 0.8352 0.9256 0.9509 
Xception 0.8001 0.8369 0.9311 0.8935  

Table 6 
Comparison of F1 scores of CNN models at various image resolutions for whole 
wheat bread.  

CNN Model Image Resolution (pixels) 

224 × 224 448 × 448 672 × 672 896 × 896 

DenseNet121 0.9653 0.9856 0.9906 0.9947 
EfficientNetV2B0 0.9750 0.9903 0.9909 0.9954 
EfficientNetV2B1 0.9826 0.9879 0.9941 0.9972 
EfficientNetV2B2 0.9887 0.9844 0.9903 0.9910 
EfficientNetV2B3 0.9718 0.9846 0.9868 0.9972 
EfficientNetV2L 0.9379 0.9873 0.9923 0.9906 
EfficientNetV2M 0.9341 0.9748 0.9880 0.9941 
EfficientNetV2S 0.9726 0.9887 0.9924 0.9960 
InceptionResNetV2 0.8996 0.9399 0.9619 0.9649 
InceptionV3 0.9091 0.9600 0.9699 0.9770 
MobileNet 0.8976 0.9768 0.9776 0.9893 
MobileNetV2 0.9243 0.9662 0.9852 0.9861 
MobileNetV3Large 0.9637 0.9838 0.9872 0.9972 
MobileNetV3Small 0.9659 0.9866 0.9932 0.9972 
NASNetMobile 0.8687 0.9126 0.9511 0.9441 
RegNetX016 0.9808 0.9896 0.9912 0.9853 
RegNetX032 0.9856 0.9895 0.9887 0.9892 
RegNetY016 0.9842 0.9931 0.9960 0.9947 
RegNetY032 0.9858 0.9941 0.9972 0.9972 
ResNet50 0.9825 0.9775 0.9944 0.9944 
ResNet50V2 0.9054 0.9540 0.9657 0.9816 
Xception 0.8881 0.9608 0.9787 0.9870  
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different image resolutions. In Fig. 6, information in both tables is 
summarized to show how image resolution affects the classification 
performance of the top model. Higher image resolution produced better 
classification accuracy, as one would expect. However, the error rate 
increased more significantly as image resolution decreased for white 
bread compared with whole wheat bread. At the lowest resolution of 
224 × 224 pixels, the F1 score of the top model was 0.9029 for white 
bread and 0.9887 for whole wheat bread. We can conclude that 
detecting mold in whole wheat bread is easier than in white bread. A low 
resolution of 224 × 224 pixels was sufficient to produce high accuracy 
for whole wheat bread, while a high resolution of 896 × 896 pixels was 
necessary to achieve similarly high accuracy for white bread. We hy
pothesize that such a significant difference was an indirect consequence 
of mold being more noticeable on white bread than on whole wheat 
bread. As a result, when a small amount of mold was noticeable and 
images were taken, mold on whole wheat bread had grown more 
compared with mold growth on white bread. 

The best models varied slightly across different image resolutions 
and types of bread, with RegNetY, EfficientNetV2, and MobileNetV3 
often being the top models. 

3.4. Experiment 3: comparing data augmentation methods 

Data augmentation can aid in artificially generating more training 
data, which in turn can help models generalize better. Our datasets were 
relatively small; thus, data augmentation could improve classification 
accuracy. We chose the following three data augmentation methods for 
our task: brightness adjustment, flipping, and rotation, as specified in 
Section 2.3. For this experiment, we used the best image representation 
for each type of bread, included only the top four to five models from the 
previous experiment, and fixed the image resolution at 896 × 896 pixels. 

The results are depicted in Fig. 7. Data augmentation did not improve 
classification performance in most cases for white bread. However, the 
results of MobileNetV3Large significantly improved when paired with 
random image rotation augmentation, with an impressive F1 score of 
0.9948 (precision=0.9896, recall=1). In all other cases, the classifica
tion accuracy either barely improved or decreased instead. In the case of 
whole wheat bread, all top models already achieved a near-perfect F1 
score of 0.9972 (precision=1, recall=0.9944), and all image augmen
tation methods did not improve classification accuracy. 

3.5. Experiment 4: effect of transfer learning 

In this experiment, we evaluated the degree to which transfer 

learning affected classification accuracy. We used the best configura
tions from previous experiments, as follows: 

White bread: MobileNetV3Large CNN model, grayscale with 
normalized mean representation, image resolution of 896 × 896 pixels, 
and image rotation augmentation. 

Whole wheat bread: MobileNetV3Large CNN model, RGB repre
sentation without brightness normalization, image resolution of 896 ×
896 pixels, and no data augmentation. 

Without transfer learning, the CNN models suffered from severe 
overfitting, where they could correctly classify training images but 
failed to generalize to unseen images. We alleviated the problem and 
improved the results by using much lower learning rates and setting the 
value of the weight decay parameter at 0.005 to act as a regularizer. The 
results are shown in Table 7. The F1 scores for both types of bread were 
poor without transfer learning, with whole wheat bread yielding better 
results than white bread as before. However, in both cases, the classi
fication accuracy was too low for these models to be useful for con
sumers. Therefore, we conclude that transfer learning significantly 
improves classification accuracy and is necessary when the dataset is 
small, such as in our case. 

3.6. Experiment 5: cross-dataset prediction 

In this experiment, we aimed to evaluate how well the top model 
performed when the test images were of a different type of bread than 
the types in the training images. Considering such scenarios is essential 
because obtaining model training images to cover all varieties of bread 
that consumers may encounter is a practical challenge. To be feasible, 
the model must be able to correctly classify images of bread that may be 
slightly different from what it has been trained on. For this experiment, 
the classification model was MobileNetV3Large, the top model for both 
types of bread. The image resolution was fixed at 896 × 896 pixels. 

The results are presented in Table 8. We found that F1 scores for 
cross-dataset prediction were noticeably lower than for same-dataset 
prediction. In addition, when the models were trained with whole 
wheat bread and tested with white bread, the F1 score was lower than 
when the models were trained with white bread and tested with whole 
wheat bread. This is consistent with earlier results showing that mold is 
more challenging to detect on white bread than on whole wheat bread. 
Training with the more challenging white bread images exposed the 
model to more complex patterns, resulting in a better classifier. The high 
F1 score of 0.9402 for training with white bread and testing with whole 
wheat bread suggests that if the training dataset were sufficiently 
challenging, the model could accurately classify different types of bread. 

Fig. 6. Effect of image resolution on the classification performance of the top model.  
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This is a fortunate scenario because, in practice, one can reasonably 
expect the user’s bread images to be similar to those of at least one of the 
common types of bread. 

3.7. Discussions 

3.7.1. Computational requirements in mobile devices 
The model with the highest classification accuracy, Mobile

NetV3Large, is a relatively small CNN model with low computational 
requirements that can be used in real-time on smartphones. It only takes 
0.08 and 1.2 s to classify a 224 × 224 and an 896 × 896 pixel image on a 
2016 Google Pixel 1 smartphone (Howard et al., 2019). Therefore, the 
CNN model can be embedded in a smartphone as an application. Once 
the user captures a microscopic image of the bread, the classification 
result will be presented after a short processing time. Thus, the low 
computational requirements make checking the bread convenient for 

Fig. 7. Effects of data augmentation on the classification performance of the top models.  

Table 7 
Effects of transfer learning on F1 scores.  

Type of Bread With Transfer Learning Without Transfer Learning 

White 0.9948 0.6212 
Whole Wheat 0.9972 0.7594  

Table 8 
F1 scores for cross-dataset prediction (same-dataset results given as reference).  

Training Dataset Test Dataset 

White Whole Wheat 

White 0.9948 0.9402 
Whole Wheat 0.8591 0.9972  
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consumers. 

3.7.2. Detection of mold inside bread 
A smartphone’s camera with a clip-on lens can only capture the 

surface of the bread. If mold exists deep below the bread surface, it may 
either be seen as blurry dark spots or be invisible, depending on how 
prominent the colony is. This is a limitation of the proposed method. 
However, it is much more common for mold to grow on the surface of 
bread because the primary source of fungal contamination is spores in 
the ambient air that land on the bread and form colonies if the condi
tions are suitable (Bernardi et al., 2019). Most fungal spores in flour and 
other raw materials are eliminated during bread baking; thus, the 
chance of mold growing only internally remains low (Garcia et al., 
2019). 

4. Conclusions 

In this paper, we proposed a novel method for consumers to detect 
mold in bread via microscopic images taken using clip-on lenses, with 
deep convolutional neural networks as the image classifier. We evalu
ated the method using white and whole wheat sandwich bread with 
natural mold growth. We found that RGB image representation worked 
best for whole wheat bread, while grayscale with normalized mean 
representation worked best for white bread. Image resolution signifi
cantly affected the classification accuracy for white bread, where a 
resolution of 896 × 896 pixels was necessary to obtain satisfactory 
performance. By contrast, mold could be accurately detected in whole 
wheat bread even at a low resolution of 224 × 224 pixels. Data 
augmentation could further improve the results in some cases. More
over, transfer learning was necessary as the classification accuracy was 
poor without it. Overall, the best models were highly accurate, 
achieving an F1 score of 0.99 or higher. The models could classify images 
of a different type of bread than the types they were trained on, with 
challenging training datasets resulting in higher accuracy. Research 
questions for the next step include how to use the clip-on lenses to take 
microscopic images of opaque food without cutting it and whether such 
images can be used to detect disease-causing microorganisms in food. 
Answering such questions would enable application of the proposed 
method to a broader variety of foods. 
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